5. Как влияет ползучесть на напряжения в бетоне и арматуре?
Рассмотрим схему на рис. 6. После приложения нагрузки N бетон и арматура укоротились на величину, соответствующую относительной деформации eb (благодаря сцеплению, они работают совместно). В бетоне установилось сжимающее усилие Nb1, а в арматуре Nsc1. Затем, вследствие ползучести, деформации выросли на величину eп. Поскольку арматура работает практически упруго, сжимающие напряжения в ней с течением времени возрастают по закону Гука на величину Dssc= eпЕs, а усилие – на величину DNsc = DsscAs (где Аs – площадь сечения арматуры), т.е. Nsc2 = =Nsc1 + DNsc. Но если Nsc растет, а внешняя сила N постоянна, то, значит, усилие и напряжения в бетоне падают: N = Nb1 + Nsc1 = Nb2 + Nsc2. Происходит перераспределение напряжений: бетон частично разгружается, а арматура дополнительно нагружается. При наличии в сжатом бетоне преднапряженной (предварительно натянутой) арматуры растягивающие напряжения в ней падают, “теряются” – отсюда и термин “потери напряжений” (см. главу 2).
Рис. 6
6. Что такое усадка бетона?
Это свойство бетона самопроизвольно уменьшаться в объеме (укорачиваться во всех направлениях) в процессе твердения и набора прочности в воздушной среде. Усадке подвергается не весь бетон, а только цементный камень. Уменьшаясь в объеме, он сжимает встречающиеся препятствия (крупный заполнитель, арматуру), от которых, в свою очередь, получает реакции противодействия. Следовательно, в препятствии возникают сжимающие, а в цементном камне растягивающие напряжения. Последние приводят к появлению усадочных трещин. Чем меньше защитный слой бетона и чем больше диаметр арматуры, тем больше вероятность образования усадочных трещин на поверхности бетона (вот, кстати, еще одна причина, почему толщина защитного слоя зависит от диаметра арматуры). Если в обычной арматуре усадка вызывает сжимающие напряжения, то в преднапряженной приводит к уменьшению (потерям) растягивающих напряжений.
7. Почему различают призменную и кубиковую прочность бетона при сжатии?
Призменная прочность Rb наиболее точно соответствует реальной прочности бетона в конструкциях, ее определяют испытанием стандартных призм размерами 150´150´600 мм. Однако изготовление призм требует вчетверо больше расхода бетона, чем изготовление кубов, а их испытание – дело очень трудоемкое (много времени отнимает центрирование призмы на прессе) и требующее дополнительных приборов. Поэтому в строительной практике призмы заменены кубами размерами 150´150´150 мм, хотя их прочность R на 33...37 % выше, чем Rb (вызвано это, главным образом, влиянием сил трения между плитами пресса и опорными гранями куба). Rb и R связаны между собой эмпирической зависимостью: Rb = (0,77– 0,001R)R.
8. Как можно увеличить сопротивление бетона сжатию?
Разрушение бетонных призм происходит вследствие поперечных деформаций, вызывающих продольные трещины (рис. 7,а). Если призму стянуть поперечными хомутами, то поперечные деформации уменьшатся, продольные трещины появятся позже, разрушение произойдет при более высокой нагрузке – сработает эффект обоймы. Роль внешних хомутов с успехом может выполнить и поперечная (косвенная) арматура в виде сеток или спиралей. Растягиваясь под влиянием поперечных деформаций бетона, арматура сопротивляется и сама воздействует на бетон в виде сжимающих сосредоточенных сил поперечного направления (рис. 7,б).
Рис.7, Рис.8
9. В чем различие между марками и классами бетона по прочности на сжатие?
Марка М – это средняя кубиковая прочность бетона`R в кг/см2; в проектировании железобетонных конструкций с 1986 г. не применяется, но в строительной практике по-прежнему имеет хождение. Класс В – это кубиковая прочность в МПа с обеспеченностью (доверительной вероятностью) 0,95. Как и любой другой материал, бетон обладает неоднородной прочностью – от Rmin до Rmax. Если изменчивость прочности представить в виде кривой нормального распределения (рис. 8), где n – число испытаний, то марка М будет соответствовать ее вершине, а класс В численно соответствует 0,0764М (при коэффициенте вариации 0,135). Например, В30 примерно соответствует М400.
10. Что такое “мягкая” и “твердая” арматурная сталь?
“Мягкая” арматура (классы А-I, A-II, A-III) на диаграмме растяжения (рис. 9,а) имеет три главных участка: упругие деформации (здесь действует закон Гука), площадку текучести при напряжениях spl (предел текучести) и упруго-пластические деформации (криволинейный участок). При проектировании конструкций используют первый и второй участки. Текучесть стали в той или иной степени учитывают в расчетах нормальных сечений на изгиб (при слабом армировании, при многорядном расположении арматуры и т.д.), в расчетах статически неопределимых конструкций по методу предельного равновесия и в других случаях. Третий участок в расчетах не участвует – деформации там столь велики, что в реальных условиях они соответствуют уже разрушению конструкций.
“Твердая”, или высокопрочная арматура (классы А-IV, Ат-IV и выше, B-II, Bp-II, K-7, K-19) не имеет физического предела текучести (рис. 9,б), она деформируется упруго до предела пропорциональности, а далее диаграмма постепенно искривляется. В качестве границы безопасной работы принят условный предел текучести s02, при котором остаточные, т.е. пластические удлинения составляют 0,2 %. У “твердых” сталей прочность выше, чем у “мягких”, но зато меньше удлинения при разрыве d, т.е. у них хуже пластические свойства, они более хрупкие. “Мягкая” и “твердая” сталь – понятия, разумеется, условные и в официальных документах отсутствуют, но они очень удобны в обиходе, потому их широко используют в научно-технической литературе.
11. Насколько важна величина удлинений арматуры при разрыве?
При малых удлинениях может произойти хрупкое (внезапное) обрушение железобетонной конструкции, даже при небольших перегрузках: арматура разорвется, когда прогибы малы, а раскрытие трещин незначительно – другими словами, когда конструкция не подает сигналов, предупреждающих о своем опасном состоянии. Поэтому арматура любого класса должна иметь величину равномерного относительного удлинения при разрыве d, как правило, не менее 2 %.