Mbt = Wpl Rbt,ser - обычная формула сопромата, в которую только внесена поправка на неупругие деформации бетона растянутой зоны: Wpl - упруго-пластический момент сопротивления приведенного сечения. Его можно определить по формулам Норм или из выражения Wpl = gWred, где Wred - упругий момент сопротивления приведенного сечения для крайнего растянутого волокна (в нашем случае - нижнего), g = (1,25...2,0) - зависит от формы сечения и определяется по таблицам справочников. Rbt,ser - расчетное сопротивление бетона растяжению для предельных состояний 2-й группы (численно равное нормативному Rbt, n).
Рис. 76
153. Почему неупругие свойства бетона увеличивают момент сопротивления сечения?
Рассмотрим простейшее прямоугольное бетонное (без арматуры) сечение и обратимся к рис.75,в, на котором показана расчетная эпюра напряжений накануне образования трещин: прямоугольная в растянутой и треугольная в сжатой зоне сечения. По условию статики равнодействующие усилий в сжатой Nb и в растянутойNbt зонах равны между собой, значит равны и соответствующие площади эпюр, а это возможно, если напряжения в крайнем сжатом волокне вдвое больше растягивающих: sb= 2Rbt,ser. Равнодействующие усилий в сжатой и растянутой зонах Nb = =Nbt = Rbt,ser bh /2, плечо между ними z = h /4 + h /3 = 7h /12. Тогда момент, воспринимаемый сечением, равен M = Nbtz =(Rbt,serbh/2)(7h/12)= =Rbt,serbh27/24 =Rbt,ser(7/4)bh2/6, или M =Rbt,ser1,75 W. То есть, для прямоугольного сечения g = 1,75. Таким образом, момент сопротивления сечения возрастает благодаря принятой в расчете прямоугольной эпюре напряжений в растянутой зоне, вызванной неупругими деформациями бетона.
154. Как рассчитывают нормальные сечения по образованию трещин при внецентренном сжатии и растяжении?
Принцип расчета тот же, что и при изгибе. Нужно только помнить, что моменты продольных сил N от внешней нагрузки принимают относительно ядровых точек (рис. 76, б, в):
при внецентренном сжатии Мr = N(eo - r), при внецентренном растяжении Мr = N(eo + r). Тогда условие трещиностойкости принимает вид: Mr ≤ Mcrc = Mrp + Mbt - то же, что и при изгибе. (Вариант центрального растяжения рассмотрен в вопросе 50.) Напомним, что отличительной особенностью ядровой точки является то, что приложенная в ней продольная сила вызывает на противоположной грани сечения нулевые напряжения (рис. 78).
155. Может ли трещиностойкость железобетонного изгибаемого элемента быть выше его прочности?
В практике проектирования действительно встречаются случаи, когда по расчету Mcrc > Mu. Чаще всего подобное происходит в преднапряженных конструкциях с центральным армированием (сваях, дорожных бортовых камнях и т.п.), которым арматура требуется только на период перевозки и монтажа и у которых она расположена по оси сечения, т.е. вблизи нейтральной оси. Объясняется это явление следующими причинами.
Рис. 77, Рис. 78
В момент образования трещины растягивающее усилие в бетоне передается арматуре при соблюдении условия: Mcrc= Nbt z1 = Ns z2 (рис. 77) – для простоты рассуждений работа арматуры до образования трещины здесь не учтена. Если окажется, что Ns = Rs As≤ Nbt z1 / z2, то одновременно с образованием трещин происходит и разрушение элемента, что подтверждается многочисленными экспериментами. Для некоторых конструкций такая ситуация может оказаться чреватой внезапным обрушением, поэтому Нормы проектирования в этих случаях предписывают увеличить на 15 % площадь сечения арматуры, если она подобрана расчетом по прочности. (Кстати, именно подобные сечения в Нормах именуются «слабо армированными», что вносит некоторую путаницу в давно устоявшуюся научно-техническую терминологию.)
Рис. 79
156. В чем особенность расчета нормальных сечений по образованию трещин в стадии обжатия, транспортировки и монтажа?
Все зависит от того, трещиностойкость какой грани проверяют и какие при этом действуют усилия. Например, если при перевозке балки или плиты подкладки находятся на значительном расстоянии от торцов изделия, то в опорных сечениях действует отрицательный изгибающий момент Мw от собственного веса qw (с учетом коэффициента динамичности kД =1,6 - см. вопрос 82). Сила обжатия Р1 (с учетом первых потерь и коэффициента точности натяжения gsp >1) создает момент того же знака, поэтому ее рассматривают как внешнюю силу, которая растягивает верхнюю грань (рис.79), и при этом ориентируются на нижнюю ядровую точку r´. Тогда условие трещиностойкости имеет вид:
Мw + P1(eop - r´ )≤ Rbt,ser W´pl, где W´pl - упруго-пластический момент сопротивления для верхней грани. Заметим еще, что величина Rbt,ser должна соответствовать передаточной прочности бетона.
157. Влияет ли наличие начальных трещин в зоне, сжатой от внешней нагрузки, на трещиностойкость растянутой зоны?
Влияет, причем отрицательно. Начальные трещины, образовавшиеся в стадии обжатия, перевозки или монтажа под воздействием момента от собственного веса Mw, уменьшают размеры поперечного сечения бетона (заштрихованная часть на рис. 80), т.е. уменьшают площадь, момент инерции и момент сопротивления приведенного сечения. За этим следует увеличение напряжений обжатия бетона sbp, увеличение деформаций ползучести бетона, рост потерь напряжений в арматуре от ползучести, уменьшение силы обжатия Р и снижение трещиностойкости той зоны, которая будет растянута от внешней (эксплуатационной) нагрузки.