Условие равновесия: Ncrc = Nbt + Ns, где Nbt = RbtAb, Ns = P2 + DNsp = ssp2Asp + 2aRbtAsp. Окончательно: Ncrc= P2 + Rbt (Ab+ 2aAsp).Стадия 6 – после образования трещин бетон выключается из работы и всю нагрузку воспринимает одна арматура (так же, как элемент с обычной арматурой на стадии 3).
Таким образом, трещиностойкость (т.е. усилие образования трещин Ncrc) преднапряженного элемента по сравнению с обычным выросла на величину силы обжатия Р2 (рис. 24,в). Подобные же стадии работы и у изгибаемых элементов, только с более сложными эпюрами напряжений.
51. Почему напряжения при обжатии определяют исходя из упругих деформаций бетона?
В первые мгновения после передачи усилия обжатия бетон работает практически упруго, а напряжение sbp в нем можно определять по обычным формулам сопромата. От величин именно этих напряжений зависят в дальнейшем деформации ползучести, а от них – и потери напряжений в напрягаемой арматуре. Как видим, в этом случае никаких погрешностей в расчете нет. Для случая расчета по закрытию трещин объяснение дано в вопросе 162.
Для остальных случаев заведомо допускается некоторая погрешность, чтобы исключить неоправданное усложнение расчетов. Однако погрешность эта компенсируется поправочными коэффициентами, например, коэффициентом j при подсчете величины радиуса ядра сечения и коэффициентом g при подсчете величины упруго-пластического момента сопротивления (см. вопрос 152).
52. Есть ли смысл создавать преднапряжение в элементах, сжатых внешней нагрузкой?
На первый взгляд, это кажется бессмысленным. Действительно, зачем к сжатию бетона внешней нагрузкой добавлять еще и предварительное обжатие? И все же такие случаи встречаются. Например, для многоэтажных зданий иногда изготавливают цельные, очень длинные колонны, что весьма удобно для монтажников – исключается трудоемкая стыковка коротких колонн. Но поднять и перевести длинную колонну невозможно: или она сломается, или в ней образуются недопустимо широкие трещины под воздействием изгибающего момента МW от собственного веса qW (рис. 25,а). Если колонну изготовить преднапряженной, то вместо работы только на изгиб она будет работать на сжатие (Р) с изгибом (МW), т.е. на внецентренное сжатие. Причем силу обжатия Р можно подобрать таким образом, что растягивающих напряжений в бетоне вообще не будет. Аналогичное решение применяют и к длинным сваям.
Другой пример: в изгибаемых элементах в зоне, которая будет сжата от внешней нагрузки, могут образовываться недопустимо широкие трещины на стадии обжатия силой Р. Если нельзя уменьшить Р, то приходится ставить напрягаемую арматуру S´p в сжатой зоне и создавать еще одну силу обжатия Р´ (рис. 25,б).
Разумеется, напрягаемая арматура в сжатой зоне играет положительную роль, пока конструкция не загружена внешней нагрузкой. Далее ее роль отрицательна, за исключением одного случая: если ssc,u- ssp2 > 0, то в напрягаемой арматуре растягивающие напряжения перейдут в сжимающие и она начнет работать как обычная сжатая арматура (здесь ssp2 – величина преднапряжения с учетом всех потерь, а ssc,u – предельные напряжения в стали, которые могут быть достигнуты в момент разрушения сжатого бетона; их принимают равными 500, 400 или 330 МПа в зависимости от длительности действия сжимающей нагрузки на бетон; см. также вопрос 27).
Рис. 25, Рис. 26
53. Что такое самоанкерующаяся арматура?
Силу натяжения арматуры можно передать на бетон двумя способами: через концевые анкера (рис. 26,а) или за счет сил сцепления (рис. 26,б). Первый способ применяют, преимущественно, при натяжении на бетон, второй - на упоры. При втором способе анкера не нужны, арматура сама заанкеривается в бетоне, поэтому и называется самоанкерующейся. Такой арматуре для уравновешивания силы обжатия Р необходимо иметь достаточную сумму сил сцепления (∑Тсц =Р), которые действуют в концевом участке – этот участок называется зоной передачи напряжений lp. Длина lp тем меньше, чем больше силы сцепления Тсц, которые зависят от профиля арматуры, ее диаметра d, передаточной прочности бетона Rbp и, конечно же, от величины преднапряжения ssp. Величину lp определяют по формуле: lp = (w ssp/Rbp +lp)d, где w и lp – эмпирические коэффициенты, учитывающие профиль арматуры.
В соответствии с характером действия Тсц меняется и усилие обжатия Рx – от нуля в торце до Р в конце зоны lp. Величина Рx меняется по сложному закону (пунктирная линия на рис. 26,б), для простоты расчетов замененному линейным законом: Рx = (lx / lp)Р ≤ Р. Очевидно, что по такому же закону меняются и напряжения обжатия в бетоне sbp.
54. В каких расчетах используют lp?
Используют тогда, когда необходимо учесть уменьшение силы обжатия бетона и ослабление сцепления арматуры с бетоном в концевых участках, т.е. в расчете трещиностойкости опорных участков (наклонные сечения), в расчете прочности наклонных сечений на изгибающий момент, в расчете прочности и трещиностойкости нормальных сечений концевых участков при действии монтажных и транспортных нагрузок и т.п. Когда дело касается учета анкеровки напрягаемой арматуры, то составители Норм проектирования, упрощая задачу, предложили принимать большее из значений lan (см. вопрос 17) иlp.
В действительности же, природа сцепления при выдергивании арматуры и при передаче усилия ее натяжения на бетон совершенно различна: если в первом случае арматура максимально смещается относительно бетона вблизи опасной трещины, то во втором – в торце конструкции.
55. С какой целью в концевых участках преднапряженных конструкций устанавливают косвенную арматуру?
Напрягаемые стержни, канаты, проволока представляют собой сосредоточенные силы, приложенные в торцах конструкций. Самоанкерующаяся арматура, кроме того, работает как клин, сужающийся по длине lp (сужение происходит от поперечных деформаций, пропорциональных продольным). В итоге, в бетоне образуются продольные трещины, которые можно предотвратить или сдержать арматурой поперечного направления. Сдерживая поперечные деформации, она косвенно повышает прочность бетона (см. вопрос 8) – отсюда и название “косвенная арматура”. Косвенной арматурой могут служить сварные сетки, спирали, анкера закладной детали и т.п. Косвенная арматура должна устанавливаться с шагом 50…100 мм на длине не менее 0,6lp.